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Abstract

In real world applications, data are often with mul-
tiple modalities. Previous works assumed that each
modality contains sufficient information for target
and can be treated with equal importance. How-
ever, it is often that different modalities are of var-
ious importance in real tasks, e.g., the facial fea-
ture is weak modality and the fingerprint feature is
strong modality in ID recognition. In this paper, we
point out that different modalities should be treated
with different strategies and propose the Auxiliary
information Regularized Machine (ARM), which
works by extracting the most discriminative feature
subspace of weak modality while regularizing the
strong modal predictor. Experiments on binary and
multi-class datasets demonstrate the advantages of
our proposed approach ARM.

1

With the development of data collection techniques, multi-
ple modal data can be acquired from many applications, e.g.,
modern mobile phones with types of sensors can collect sen-
sor signals from multiple channels. In order to utilize the
information from different modalities, more and more at-
tentions have been paid to multi-modal learning. Ngiam et
al.[2011] applied deep networks to learn features over mul-
tiple modal data; Zhai et al.[2013] used multi-modal method
for efficient large-scale similarity search; Nguyen et al.[2013]
proposed the M3LDA to annotate image regions and provide
a promising way to understand the relation between input
patterns and output semantics. The main assumption behind
these methods is that each modality contains sufficient infor-
mation for target tasks and is with equal importance.
Nevertheless, different modalities are of various impor-
tance under specific circumstance. In this paper, we de-
note the important modalities with particular tasks by strong
modality. On the contrary, the modalities with less impor-
tance are weak modality. E.g., in identification systems, rec-
ognizer can more easily tell the ID with the fingerprints pro-
vided, so we denote the fingerprints as strong modality, while
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features like face descriptors and gaits are usually less ac-
curate, they are weak modalities in this task. It is notable
that strong modal features can lead to a better performance,
nevertheless, are more expensive, therefore a group of serial-
ized feature extraction methods were proposed. These meth-
ods extract weak modal features firstly, and then extract more
strong modal features gradually to improve the performance
and reduce the overall cost as well. Marcialis ez al.[2010] pro-
posed a serial fusion technique for multiple biometric modal
features through extracting gaits information and face infor-
mation step by step; Zhang et al.[2014] addressed the seri-
alized multi-modal learning techniques in a semi-supervised
learning scenario. These methods handle strong and weak
modalities independently while leaving the fact of unsatisfied
performance on weak modality unexplained. In this paper, we
consider the issue of unsatisfied classification performance on
weak modality, and attribute the phenomena into two differ-
ent reasons:

e Weak modality can be with insufficient information,
e.g., face with occluded illumination conditions;

e Weak modality contains helpful information, but these
information are ‘hidden’ behind other irrelevant factors,
e.g., noise, irrelevant features.

In the second situation, how to extract the discriminative
features of weak modality by feature learning and improve
the multi-modal learning classification performance are the
urgent problem. In this paper, we will mainly focus on this
situation for discussion.

We therefore propose the ARM (Auxiliary information
Regularized Machine) approach to extract the most discrimi-
native features of weak modality with the auxiliary informa-
tion of strong modality in multi-modal learning. In super-
vised learning, lots of feature extraction methods have been
proposed, we can easily use sufficient supervised informa-
tion in these methods, e.g., face recognition with supervised
feature extraction methods. However, here is usually in semi-
supervised scenarios when performing multi-modal learning,
and it is difficult to improve the performance with a lim-
ited amount of labeled data, while it is easy to gather the
strong modal information corresponding to weak modality.
In this paper, we consider the auxiliary information provided
by strong modality, and utilize them to help weak modality
extract more discriminative features. Meanwhile, through the



consistency of classifiers on strong and weak modality, we
want to get better multi-modal learning performance. The ef-
fectiveness of the proposed ARM approach is validated in our
empirical investigations.

Section 2 is related work. Section 3 presents our approach,
and the algorithm is presented in Section 4. Section 5 reports
our experiments. Finally, Section 6 concludes.

2 Related Work

Our ARM approach can handle multiple modal information
in semi-supervised scenarios as well as extracting informa-
tive features of weak modality by feature learning. Therefore
our work is closely related to: multi-modal learning, semi-
supervised learning and feature learning.

The exploitation of multiple modalities has attracted many
attentions recently. The mainstream of the multi-modal
learning models handle multi-modal information in parallel
or serialized style, especially for biometric learning tasks,
e.g., [Hong and Jain, 1998], [Zhou er al., 2005], [Zhang
and Li, 2014]. However, these methods handle each modal-
ity independently first and then fuse them with late fusion
strategies, without considering the correlation between dif-
ferent modalities, while in recent, Kiros et al.[2014] jointly
learn word representations and image features by convolu-
tional network.

Many studies have made efforts on the exploitation of
multi-modal learning with unlabeled data. Modern multi-
modal semi-supervised learning methods mainly derive from
co-training methods. Co-training [Blum and Mitchell, 1998]
is the most famous multi-modal semi-supervised learning
method, which trains two classifiers separately on two modal-
ities and then uses them to label unlabeled instances for each
other. Co-training style semi-supervised learning approaches
have been well developed in decades, e.g., [Kiritchenko and
Matwin, 2011], [Zhang and Zhou, 2011]. However, previ-
ous methods mainly focus on how to label the unlabeled data
between different modalities while leaving the importance of
different modalities unconsidered.

In feature learning research, conventional feature learning
methods liking PCA [Jolliffe, 2005], LPP [He and Partha,
2003], LDA [Fisher, 1936] etc. aim to extract features in
a low dimension space. Feature learning methods are also
used in many applications, e.g., [Xu er al., 2010], [Guo and
Xue, 2013], [Xie et al., 2014]. However, most existing fea-
ture learning methods require supervised information. Yet it
is hard to get enough labeled examples in practice.

To the best of our knowledge, previous multi-modal meth-
ods assume that each modality would be sufficient for classifi-
cation without differences of ‘strong’ or ‘weak’. But in prac-
tice, it is difficult to build a classifier just using weak modal-
ity with limited labeled data, so we turn to utilize auxiliary
information provided by the strong modality. In this paper,
we proposed an Auxiliary information Regularized Machine
(ARM) which utilizes the multi-modal information in semi-
supervised scenario. Moreover, ARM can exploit the weak
modal features more extensively, extract the useful feature
subspaces from weak modalities. Therefore, with ARM we
can only extract/utilize the relatively inexpensive weak modal
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features, and obtain an improved weak modal prediction per-
formance during the test phase.

3 Proposed Method

Suppose we have N examples, where labeled examples
are denoted by {(z;,v;)}~!, and unlabeled instances are
{2}y, 11, where z; € R%, and y; € {0, 1} which denotes
the class label of the i-th sample. d is the feature dimen-
sion. Meanwhile, in multi-modal learning, instance space can
be denoted as two parts without overlap, V' = {V;"*, V2},
where Vfll is the feature space derived from weak modality

and V2d2 is the features of strong modality, d = d; +d2. Con-
sequently, each instance x; can be denoted as (4, , Ti v, )-

Auxiliary Information Regularized Machine(ARM)

Auxiliary information Regularized Machine (ARM) aims to
improve the multi-modal learning performance while extract-
ing the most discriminative weak modal feature subspace at
the same time. As a consequence, we can get more accurate
predictions with either only the weak or the strong modal fea-
tures provided in the test phase.

In detail, ARM can be decomposed into two targets: first,
with the feature subspace learned by ARM on weak modal-
ity, we can predict a instance only with the raw features from
weak modality, and this requires extracting the most discrim-
inative feature subspace in weak modality. Conventional fea-
ture learning methods often require lots of labeled data to
supervise the learning process, while in multi-modal learn-
ing scenario, the volume of data is usually larger than that of
single modal learning, nevertheless, the labeled examples are
very limited. Therefore, in order to extract more discrimina-
tive feature from the weak modality, ARM needs to make full
use of information from strong modality. Besides, it is also
expected ARM can achieve even better performance when the
weak as well as the strong modal data are provided in the test
phase, and this requires the consistency of predictions built
on the strong and weak modality. Thus, we can formulate the
ARM model as:

argmin || Fy, ||3 + A E,) Ly, Foy + Ao|| X, 0 = Y%

Fyp o

s.l. yifvz ($i7v2) >1, (1)
where F’U2 = {fvz(wl,v2)>fv2(w2,v2)>---,fuz(xN,vg)} €
RN, fu,(2i.,) is the strong modal prediction value for x; ,, .

L,, is the Laplacian matrix on weak modality. X,, =
{Zi v, =1,---, N1} is the matrix of weak modal labeled
examples. The label information is encoded in the vector
Y = [y1,y2,.--,yn,] € RN, where y; = 1 if ; belongs
to positive class, and y; = 0 is negative. w is the feature ex-
traction matrix for weak modality. A; and \s are the balance
factors, and constraints y; f,2 > 1 is a hard margin for strong
modal labeled examples.

The || F., |3 is the structure risk of strong modal predictor

fv, in the function space, and HXUTl w — Y||% acts as linear

dimensionality reduction on weak modality [Ye, 2007].

Vi € {1,...7]\71}7



The main targets of ARM are closely related to the 2nd
term of Eq. 1. In this term, L,,, is defined as following:

L’Ul = D’U1 - WUl? (2)
where without any loss of generality, we represent the weak
modal instance matrix X,, € R“*" as X w in the dis-
criminant feature space, which is expected to extract the most
informative features for classification, and W, is similarity
matrix of weak modal instances, denoted by the inner prod-
uct of instances in the discriminant feature space: W,, =
(X w, X w). Dy, is the diagonal matrix induced from the
Wy, s Dy, i is the diagonal entry. D, ; = Zj W, i,5» where
Wy, 5,5 1s the (¢, ) element of matrix W,,. When w is pro-
vided, the 2nd term is equivalent to:

M S P @) = Foa (@5.02)) W50

2%

3

which reveals that similar weak modal instances in the pro-
jected feature space should have similar predictions with
strong modal predictor.

By reciting the 2nd term of Eq. 1, it can be found that when
fv, 1s provided or obtained with high accuracy, we can get a
better projection matrix w by minimizing the 2nd term. In this
way, the strong modal information acts like a supervisor, to
guide the weak modal feature extraction. The labels of weak
modal instances should also be considered, and thus we in-
troduce the 3rd term which is a variant of linear discriminant
analysis [Ye, 2007]. On the other hand, when a better feature
space for weak modality is provided, we can trust the similar-
ities calculated on the weak modal feature space, and then the
2nd term of Eq. 1 actually becomes a manifold regularizer for
the strong modal predictor according to [Belkin er al., 2006].

As a matter of fact, we not only encounter with binary
problems in many practical applications, and the ARM for-
mulation can be easily extended into multi-class case where
we have c classes:

argmin |Fg, |3 + A tr (Fg, Lo, F,) )
Ffz,w
+ el X w = (YY) "2V
st yso fio(zin,) >1, Vie{l,..., N1},
where F, = {f5, (1,0,) - [, (2n0,)} € RV¥, e € R?

is a multi-class label vector, y$(j) = 1 indicates the i-th in-
stance belongs to the j-th class, o is element wise product
operator, 1 is the all one vector, w € R *¢, tr(+) is the trace
operator. The constraints y§ o F;, > 1 are still hard margins,
since strong modal examples should be classified correctly.
While herein Eq. 4, the normalized label matrix can be repre-
sented by (YY T)~2Y [Ye, 2007]. Inspired by [Melacci and
Belkin, 2011], the strong modal predictor can be denoted as:

N
c cT
FvQ(xiﬂJQ) = Zaj K(x]'»vzv'ri,vz) +b
J

where a = {a§, j =1,--- ,N} € RN*¢, K(-, 2;,,) is the
i-th column of strong modal kernel matrix for both labeled
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and unlabeled data, a§ € R°. The Eq. 4 is reformed as:

argmin tr (aTKoz) + A tr (aTKLleoz)
Fe w

vo

(&)

+ | X w— (YY) 72|}
st yfo(a'K(2ivw)+b)>1, Vic{l,...,Ni}.

4 Algorithm

The 2nd term in Eq. 5 involves the product of the weak modal
feature extraction matrix w and the strong modal predictor ¢,
which makes the formulation not joint convex. Consequently,
the formulation cannot be optimized easily. The alternative
descent algorithm is utilized for solving this problem, and we
will reveal the physical meanings of each step in correspond-
ing subsection. Specifically, we first optimize the objective
function respect to w when « is fixed, then optimize o while
making w fixed. We provide the optimization process below:

Fix o, Update w
We define Fi j = [|(f5, (@iv,) = f5,(2j0,))]I3, and M =
leFXvT1 . According to [Ye, 2007], the 3rd term of Eq. 5

can be written as LDA. When « is fixed, the term tr(a " Ka)
is not related to w, thus Eq. 5 can be equivalently written as:

argmin = A tr(w! Mw) + A tr(w ' Spyw)
@ (6)

st. w'Spw=1,

where Sy, is the within-class variance, and Sp is the
between-class variance. R
However, F' may not always be positive definite and F’ is
not guaranteed to be reversible. To overcome this, we define
F' to be the inner product of strong modal instances, which
can be represented by F; ; = f¢ (%,)" S, (%,0,) and de-
fine M = X, FX,, and yield the main target function,
which aims to get a better feature projection with the help
of strong modality:
argmax  \j tr(w' Mw) + g tr(w' Spw)
@ (N
st w Syw=1I.
Eq. 7 has closed-form solution for w, or w can be obtained by
the generalized eigenvalue of (A M + \aSp)w = ASww.
From the aspect of dimensionality reduction or feature ex-
traction, we treat the extra strong modal information as su-
pervision to help learning the discriminative projection ma-
trix w for weak modality, i.e., we consider the predictor f,, as
pseudo labels and make kernel alignments between the strong
modal predictions and the weak modality in the projected fea-
ture space in this step.

Fix w, Update o

When w is fixed, note that the 3rd term in Eq. 5 is not re-
lated to the predictor f,,. So Eq. 5 can be addressed as the
following sub-problems:

argmin tr (aTKoz) + Aq tr (ozTKLq,lKoz) (8)

s.2. yTC ° (QTK('yxi,Uz) +b) > 17 Vi e {17 : '5N1}7



where we can solve it via efficient quadratic program-
ming(QP) method.

When w is fixed, in the 2nd term of Eq. 8, the strong
modal predictor « treats the K L,, K, which is a hybrid of
K and Laplacian matrix L,, as a regularizer, and we expect
the Laplacian regularizer defined on weak modality can boost
the performance of strong modality.

Above procedures are repeated iteratively until conver-
gence, the ARM algorithm is shown in Algorithm 1. The
algorithm updates the parameters, and experiments show the
objective value can be decreased gradually.

Prediction

In the prediction procedure, from Algorithm 1, it can be found
that we can predict either with the strong modal predictor «
or by kNN with the weak modal linear projection matrix w.
In detail, for strong modality, we can use

N
fﬁz (x’imz) = Zj O‘;K(Jjj,’uz ) x’i,’uz) +b

for predicting x; ,,,. For weak modality, we first use the w to
extract the latent feature representation of both training data
and testing data on weak modality, then use kNN for classifi-
cation on weak modality, since most feature extraction meth-
ods employ kNN as the classifier.

Algorithm 1 The ARM method
Require: X!, X" X!, X% A1, o, Y5

1: Initialize w® < I;

2: Initialize a® «+ Eq. 8 with fixed w = I;
3: while true do
4: Funcf)bj < calculate obj. value in Eq. 5 with o, w?;
5. Fix of,update w'*! < Eq. 7;
6:  Fix w't! update a’*! «+ Eq. 8;
7: Funcf)gjl + calculate obj. in Eq. 5 with o'*+1, wit!;
8 if \Funcfgjl - Funcf)bj| < threshold then
9: Break;
10:  end if
11: end while
12: return «, w;

5 Experiment

In this section, we first introduce the datasets in brief and then
give the empirical results of ARM and compared methods.

Datasets and Configurations

ARM can be adopted for many applications with multi-modal
features. In this paper, we use the datasets from image cate-
gorization , webpage classification and the biometric tasks in
our empirical investigations.

For image categorization, two real-world image datasets
are used, i.e., Nus [Chua et al., 2009] and Msra [Wang et
al., 2009]. Nus subset contains 9,109 images of 10 cate-
gories, and has 6 groups of features extracted. Msra subset
contains 10,680 images of 9 categories, and has 7 groups of
features are extracted. We partition all the features into strong
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modal features and weak modal features. More specifically,
in Nus, color histogram features are weak modality while the
rest are strong modal features. Examples from Professional
and Movie are selected for balanced binary classification; In
Msra, HSV color histogram are weak modal features and the
rest are strong modal features, and 2 balanced categories are
selected for classification as well.

The WebKB dataset contains webpages collected from 4
universities: Wisconsin, Washington, Cornell and Texas.
These webpages are about five categories, i.e., student,
project, course, stuff and faculty, and described with two
modalities: the content and the citation. We consider the
content as weak modality and the citation as strong modal-
ity. Five subsets are constructed from WebKB, i.e., Winscon-
sin; Washington; Cornell and Texas (denoted as Wins., Wash.,
Corn. and Texas in tables), which use the instances from each
single university, and WebKB that combines all universities
data is also tested in our experiments. The first 4 datasets are
for binary classification, which aim to tell the differences be-
tween student and stuff vs. the rest categories. While WebKB
is a multi-class classification task, which aims to identify the
differences between each university.

In Biometric task, we construct the virtual faces and gaits
dataset, in which faces are strong modality and gaits are weak
modality. The CMU PIE is used for face modality construc-
tion and the gaits dataset is collected by SDUML [Zhang et
al., 2014]. PIE contains more than 750,000 images of 337
people. In the constructed faces and gaits dataset, 25 vir-
tual users are picked out by assigning the same identity to the
users from PIE and SDUML. Gait sequences contain 25 users
with 40 gait sequences per user. For each gait sequences, we
choose the first 50 frames in each video to represent the gait
sequence. For each of the 25 virtual users, 150 frames are
randomly chosen and the contour features of gait sequences
are extracted; for face modality, 150 images are randomly se-
lected per person. This dataset is denoted as Biom. in tables.

For all datasets in our experiments, we randomly select
66% instances for training, and the remains are used for test-
ing. The labeled ratio is set to 30% according to [Zhang et al.,
2014]. We repeat this for 30 times, the average accuracy and
std. of predictions are recorded as classification performance.
The parameter A\; and \s in the training phase is tuned in
{1072,1071,1,10,10?}. Empirically, when the variations
between the objective value of Eq. 5 is less than 10~ in iter-
ation, we treat ARM converges. HIK kernel is used in ARM.

Comparing with Multi-Modal Learning Methods

ARM is essentially a multi-modal learning algorithm. It
should be compared with the state of the art multi-modal
learning methods. In our empirical investigations, 4 multi-
modal learning methods are compared:

KCCA (kernel CCA) [Hardoon et al., 2004] is first used to
extract the latent feature representation of both the strong
modality and weak modality, and then kNN is performed for
the final classification;

Co-Training is a famous multi-modal semi-supervised learn-
ing method, and co-training usually employs Naive Bayes as
the base learner;

CoTRADE As a Co-Training style algorithms, COTRADE



Table 1: The accuracy (avg.+std.) of compared multi-modal methods on weak and strong modality. For ARM and KCCA
the performance of weak and strong modality are listed separately. The best classification performance of strong modality is

bolded while that of weak modality is marked with black dots.

ARM

KCCA

Strong Modality  Weak Modality  Strong Modality  Weak Modality Co-Training  CoTRADE  Co-Regularization
Nus .898+.012 .756+.012 .7624.016 .694+4.020 725+.016 .7284.016 .788+0.013
Msra .936+.006 .8141.007e .8254.056 7404.011 .5924+.015 .5904.019 .76940.003
Wins. .847+.057 7254.043e .694+.030 .625+.070 .6534.045 .6624.049 .657+0.042
Wash. .895+.041 .7331.056 7644.046 .6724.087 .658+.114 .6854.098 .7444-0.045
Corn. .863+.049 .696+.040e .699+.030 .628+.113 .6424.091 .653+.069 .688+0.004
Texas .845+.052 7811.049e [7254+.017 7584.058 .6674.058 .7024.058 .72140.007
WebKB .644+.029 .4944.041 .545+.023 446+.049 4204.067 N/A .546+.026
Biom. 973+.005 .6831.007e .8484.008 .566.005 .5194.042 N/A .668+.020

chooses the predictions with authentic high confidence for la-
beling information communication based on a particular de-
signed data editing techniques;

Co-Regularization In Co-Regularization [Sindhwani and
Niyogi, 2005], it aims to reduce the divergence of two pre-
dictors on different modalities. We follow [Sindhwani and
Niyogi, 2005] and use the Laplacian SVM as the classifier.

Table 1 records the prediction accuracies (avg.t std.) of
weak/strong modalities of the ARM and compared methods.
ARM is tested with a kernel classifier f,,, on strong modality
as well as kNN on weak modality. As a consequence, we
can either directly use the kernel classifier or employ £NN on
the reduced dimensions(feature spaces) as the classification
method during the test phase. The former result is denoted
by ‘strong modality’ in Table 1, while the latter is denoted by
‘weak modality’ in the same table.

Table 1 clearly reveals that on all 6 binary classification
datasets, the ARM average accuracies of ‘strong modality’
are the best. While comparing to KCCA (weak modality),
Co-Training, CoTRADE, Co-Regularization, on Msra, Win-
sconsin, Cornell and Texas, i.e., 4 of the 6 binary classifica-
tion datasets, the ‘weak modality’ performance of ARM are
also the best. On multi-class classification, the average accu-
racies of ARM (on both the weak modality and strong modal-
ity) are the best among all of the compared methods except
for the weak modality performance on WebKB.

Comparing with Dimensionality Reduction
Methods on Weak Modality

ARM employs the information from strong modality to help
extract a better feature space of weak modality, thus, it is
closely related to dimensionality reduction from the aspect
of weak modality. To validate the effectiveness of utilizing
strong modality for weak modal feature extraction. We com-
pare ARM with dimensionality reduction methods, i.e.,
Linear dimensionality reduction methods such as LPP,
LDA, PCA, CSFS [Chang et al., 2014] are used to extract the
reduced subspace, and then KNN is performed for obtaining
the final classification result. Table 2 records the weak modal
performance of ARM and compared methods. It clearly re-
veals that on 6 binary classification datasets and 2 multi-class
datasets, the performance of ARM are the best.
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Table 2: The accuracy (avg.+std.) of ARM (weak modal-
ity) compare with other dimensionality reduction methods on
classification tasks. The best classification performance on
each dataset is bolded.

| ARM LPP LDA PCA CSFS
Nus 756+.012 .691+.012 .690+.012 .578+.016 .742+.014
Msra | .814+.007 .752+.012 .7524+.013 .6724+.011 .799+.008
Wins. |.725+.043 .653£.072 .653+.073 .582+.071 .659£.065
Wash. |.733+£.056 .701+.073 .701+£.073 .662+.046 .7324.050
Corn. |.696+.040 .603£.130 .600+£.127 .573+.108 .605+.121
Texas |.7814.049 .754+.049 .754+.049 .683+.076 .748+.061
WebKB | .494+.041 .425+.028 .425+.028 .4074.028 .475+.043
Biom. |.683+.007 .664+£.015 .6444.015 .4924+.013 .634+£.011

Table 3: The accuracy (avg.tstd.) of ARM (strong modality)
compare with kernel methods on classification tasks. The best
classification performance on each dataset is bolded.

| ARM(Strong) LibSVM;  LibSVMs LapSVM
Nus 898+.012  .895+.013 .837+£.031 .890+.010
Msra 936+.006 .933+.004 .769£.000 .932+.003
Wins. .847£.057  .869+.045 .781+£.111 .798+.037
Wash. 895+.041  .865+.032 .785+.105 .781+£.050
Corn. 863+.049  .859+.034 .801+£.082 .689+.004
Texas .845+.052 .860+.038 .812+.067 .729+.008
WebKB 644+.029  .618£.025 .485+.000 .606+.033
Biom. 973+.005  .914+£.000 .960+.000 .800-+£.000

Comparing with Kernel Methods on Strong
Modality

ARM trains a kernel classifier on strong modality. As a matter
of fact, if the test examples are only with strong modality, we
can employ the kernel classifier trained by ARM to predict the
instances. As a consequence, ARM should be compared with
the kernel methods. In our empirical study, 3 kernel methods
are compared, i.e.,

Kernel methods, such as LibSVM [Chang and Lin, 2011],
LapSVM [Belkin er al., 2006], are compared with ARM in
additional experiments. It is notable that here LibSVM; rep-
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Figure 2: Objective function value convergence and corre-
sponding classification accuracy vs. number of iterations of
ARM with labeled data ratio at 30%

resents LibSVM with HIK kernel and LibSVM5 represents
LibSVM with polynomial kernel. Table 3 records the strong
modal performance of the ARM and compared methods. It
clearly reveals that on Msra, Washington, Cornell and Texas,
i.e., 4 binary datasets and all multi-class datasets, ARM has
achieved the best performance.

Investigation on Stability of Parameter

In order to explore the influence of parameters A\; and Ao,
more experiments are conducted. We first fix the A; while
tuning Az in {1072,107*,1,10,10%} and record the average
accuracy in the first row of Fig. 1, then we fix the Ay while
tuning A; in {1072,107%, 1,10, 10? } and get the average ac-
curacy in the second row of Fig. 1. Due to the page limits,
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the 4 datasets with labeled data ratio at 30%

we only list 4 datasets for verification, i.e., Msra, Winscon-
sin, Cornell and WebKB. From these figures, we can find that
ARM achieves a stable performance on each dataset, which
indicates the insensitivity of ARM to parameters.

Empirical Investigation on Convergence

To investigate the convergence of ARM iterations empiri-
cally. The objective function value, i.e., the value of Eq. 5 and
the classification performance of ARM in each iteration are
recorded. Due to the page limits, results on only 4 dataset are
plotted in Fig. 2. It clearly reveals that the objective function
value decreases as the iterations increase, and the classifica-
tion performance is stable after several iterations on different
datasets in Fig. 2. Moreover, these additional experiments re-
sult indicates that our ARM can converge very fast, i.e., on
most datasets, ARM converges after 3 rounds.

6 Conclusion

In this paper, we focus on multi-modal classification and
present a novel method ARM. We first analyze the phe-
nomenon of the unsatisfied classification performance on
weak modality and attribute the reasons into lack of informa-
tion or disturbance of informative weak modal features. We
claim that different modalities should be treated with differ-
ent strategies, and consequently proposed the ARM approach.
ARM can perform feature extraction on weak modal features
by treating the auxiliary information from strong modality
as supervision, meanwhile it can also improve the classifica-
tion performance on strong modality by organizing the weak
modal features as a regularizer. Empirical results on real
world datasets clearly validate the effectiveness of ARM, and
show that ARM can extract the most discriminative feature
subspace on weak modality while successfully regularize the
strong modal predictor at the same time. In the current setting
of ARM, only two modalities are considered. How to distin-
guish more than two modalities by classification capacities
and integrate multiple weak or strong modalities in the ARM
framework can be an interesting future work.
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